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ABSTRACT

Two experiments were conducted to test the hypothesis that
cortisol interferes with the positive feedback action of estradiol
that induces the luteinizing hormone (LH) surge. Ovariecto-
mized sheep were treated sequentially with progesterone and
estradiol to create artificial estrous cycles. Cortisol or vehicle
(saline) was infused from 2 h before the estradiol stimulus
through the time of the anticipated LH surge in the artificial
follicular phase of two successive cycles. The plasma cortisol
increment produced by infusion was ;1.5 times greater than
maximal concentrations seen during infusion of endotoxin,
which is a model of immune/inflammatory stress. In experiment
1, half of the ewes received vehicle in the first cycle and cortisol
in the second; the others were treated in reverse order. All ewes
responded with an LH surge. Cortisol delayed the LH surge and
reduced its amplitude, but both effects were observed only in
the second cycle. Experiment 2 was modified to provide better
control for a cycle effect. Four treatment sequences were tested
(cycle 1-cycle 2): vehicle-vehicle, cortisol-cortisol, vehicle-
cortisol, cortisol-vehicle. Again, cortisol delayed but did not
block the LH surge, and this delay occurred in both cycles. Thus,
an elevation in plasma cortisol can interfere with the positive
feedback action of estradiol by delaying and attenuating the LH
surge.

cortisol, estradiol, glucocorticoid, LH surge, luteinizing hormone,
positive feedback, stress

INTRODUCTION

Various types of stress disrupt the follicular phase of the
ovarian cycle and delay or block the preovulatory luteinizing
hormone (LH) surge. For example, a delay of the surge has
been observed in rhesus monkeys exposed to the combined
stress of exercise, food restriction, and exposure to a novel
environment [1] or treated with endotoxin [2], which is a
commonly used model of immune/inflammatory stress. In

sheep, the LH surge can be delayed or blocked by infusion of
endotoxin [3] or by transport in a truck [4, 5]. Restraint stress
can block the preovulatory LH surge of the rat [6].

Mechanistically, stress could disrupt the LH surge either by
interfering with generation of the follicular phase increase in
estradiol secretion, which constitutes the ovarian positive
feedback signal for inducing the LH surge, or by interfering
with the neuroendocrine response to this positive feedback
signal. Both disruptive mechanisms are likely called upon
during stress. In sheep, for example, endotoxin inhibits both
pulsatile gonadotropin-releasing hormone (GnRH) secretion [7,
8] and pituitary responsiveness to GnRH [9], which would
reduce gonadotropic drive to the ovary and thus interfere with
the follicular-phase rise in estradiol secretion [3]. Endotoxin
also delays or blocks estradiol-induced GnRH and LH surges
[10, 11] and transport delays and attenuates the LH surge
response to estradiol [4, 5]. These stressors, therefore, interfere
with the positive feedback action of estradiol.

One signature of the stress response is the close association
of reproductive suppression and activation of the hypothalamo-
pituitary-adrenal axis leading to enhanced glucocorticoid
secretion [12, 13]. In this study, we tested the hypothesis that
an elevation in plasma cortisol interferes with LH surge
generation by disrupting the neuroendocrine response to the
positive feedback action of estradiol. Three observations in
sheep prompted this hypothesis. First, a stress-like increase in
plasma cortisol delayed [14, 15] or blocked [16] the
preovulatory LH surge of nonstressed sheep. That response,
however, could have been due to suppression of estradiol
synthesis rather than interference with the response to positive
feedback because cortisol suppresses pulsatile GnRH and LH
secretion and lowers plasma estradiol levels in follicular-phase
ewes [14–16]. Second, an infusion of endotoxin that interfered
with the estradiol-induced LH surge also caused a large
increase in plasma cortisol sustained for the entire latent period
between onset of the estradiol stimulus and generation of the
LH surge [10]. Thus, elevated cortisol accompanies the
impaired positive feedback response. Third, disruption of the
estradiol-induced LH surge by endotoxin was not reversed by
suppressing the synthesis of prostaglandins [11], and the
disruptive effects of transport or restraint on the LH surge were
not reversed by blocking the action of endogenous opioids [6,
17]. Because prostaglandins and opioids mediate other
reproductive neuroendocrine responses to stress [8, 18–20],
those findings implicate a role for a different intermediary
molecule. Although cortisol is a likely candidate, its influence
on the LH surge response to a fixed estradiol signal has not
been fully investigated. Herein we tested whether an increase in
plasma cortisol interferes with the positive feedback action of
estradiol in ovariectomized ewes treated with estradiol and
progesterone to simulate changes in these steroids during the
natural estrous cycle (artificial estrous cycle model).
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MATERIALS AND METHODS

Experiments were conducted on sexually mature Suffolk ewes maintained
at the Sheep Research Facility, Ann Arbor, MI. The animals were fed hay and
alfalfa pellets and had free access to water and mineral licks. At least 2 mo
before the study, the ewes were ovariectomized using aseptic conditions and
general anesthesia. Two experiments were conducted in April and June
(nonbreeding season) of successive years; our previous work indicates that
season does not affect cortisol-induced inhibition of pulsatile LH secretion [21].
For the experiments, ewes were moved into rooms where the photoperiod was
controlled to simulate that of the outdoors. All procedures were approved by
the University Committee for the Use and Care of Animals at the University of
Michigan.

Artificial estrous cycles were created as previously described [11, 22, 23]
by treatment with a 1-cm s.c. estradiol implant and two intravaginal
progesterone-releasing devices (controlled internal drug release; DEC Interna-
tional, Hamilton, New Zealand) to simulate plasma concentrations of these
steroids during the luteal phase. After 7–9 days, which approximates the
duration of maximal progesterone secretion in the luteal phase [24],
progesterone was withdrawn by removal of controlled internal drug release
devices, and four 3-cm estradiol implants were inserted s.c. 16 h later to
simulate the follicular-phase rise in plasma estradiol to ;6 pg/ml. During this
artificial follicular phase, surges of GnRH and LH are reliably induced, with
peaks occurring ;24 h after onset of the estradiol rise [11, 23, 25]. Plasma
concentrations of estradiol and progesterone have been extensively character-
ized in this model [10, 11, 22, 26] and were not monitored in this study.

Two indwelling jugular vein catheters were inserted the day before the
surge-inducing estradiol stimulus, one for sampling blood and the other for
infusing cortisol or vehicle. Cortisol (325 lg/kg/h, Solu-cortef; Pharmacia &
Upjohn, Kalamazoo, MI) or vehicle (saline) was infused using backpack
infusion pumps (AutoSyringe, model AS2BH; AutoSyringe, Inc., Hooksett,
NH), allowing the sheep to move freely around the room throughout the
experimental period. This dose of cortisol was calculated to produce a rise in the
plasma cortisol concentration to ;150 ng/ml, within the upper range of values
observed during infusion of endotoxin [3, 10]. Infusions started 2 h before the
surge-inducing estradiol stimulus (four 3-cm estradiol implants) and continued
for 42 h, well beyond the expected time of the LH surge in control ewes.

Experiment 1

Experiment 1 was conducted according to a crossover design on two groups
of ovariectomized ewes in which two successive artificial estrous cycles were
produced, separated by a 4-day period of no hormone replacement. One group
(n¼ 5) received vehicle during the first artificial follicular phase and cortisol in
the second; the other group (n ¼ 5) received the same treatments in reverse
sequence. Blood was sampled hourly from 2 h before to 4 h after onset of the
estradiol stimulus (0 h) and again from 12–48 h to encompass the time of the
LH surge. Luteinizing hormone was assayed in all samples; cortisol was
measured from�4 to þ1 h and at 12, 18, 22, 34, and 48 h. Data for one animal
in which cortisol was infused in cycle 1 and vehicle in cycle 2 were excluded
from the analysis because of technical difficulties with the cortisol infusion.

Experiment 2

Experiment 2 was conducted using a similar approach, but two additional
groups were included to control for a cycle effect because experiment 1
suggested that cortisol interfered with the LH surge only in the second cycle.
One additional group was treated with vehicle during the artificial follicular
phase of both cycles, and the other received cortisol on both occasions. Thus,
there were four groups (six ewes per group) treated as follows in the first and
second cycles (cycle 1-cycle 2): vehicle-vehicle, cortisol-cortisol, vehicle-
cortisol, and cortisol-vehicle. This expanded design strengthened comparison of
LH surge parameters between vehicle and cortisol treatments within a given
cycle and provided a better control to test for treatment effects within ewes
across both cycles. All other procedures were identical to those of experiment
1. Because of technical difficulties, data were excluded for both cycles of one
ewe that received cortisol in cycle 1 and vehicle in cycle 2, as well as for cycle
2 of one ewe treated with vehicle in cycle 1 and cortisol in cycle 2.

Assays

Luteinizing hormone was assayed in duplicate aliquots (5–200 ll) of
plasma using a modification [24] of a previously described radioimmunoassay
[27, 28]. Assay sensitivity averaged 0.56 ng/ml (20 assays), and intraassay and
interassay coefficients of variation averaged 4.9% and 8.1%, respectively.
Cortisol was assayed in duplicate 50-ll aliquots of unextracted plasma using
the Coat-a-Count Cortisol Assay Kit (Diagnostic Products Corp., Los Angeles,

CA), validated for use in sheep [7]. Sensitivity averaged 0.62 ng/ml (eight
assays), and intraassay and interassay coefficients of variation averaged 2.3%
and 10.3%, respectively.

Data Analysis

As in our previous investigations (10), the LH surge was defined as a rise in
plasma LH concentration exceeding 2 SD above the presurge baseline (surge
onset) and maintenance of that elevated level for at least 4 h. A mean 6 SD
presurge baseline was calculated for each ewe using values from 2 h before to
12 h after onset of the surge-inducing estradiol stimulus. Four aspects of the LH
surge were examined: percentage of ewes expressing the LH surge, interval
from onset of the estradiol stimulus to peak of the LH surge (latent period),
average of the three highest contiguous hourly values during the LH surge
(amplitude), and interval from the surge onset to the time when LH fell to 10%
of the surge peak (duration). Data for the latent period, amplitude, and duration
during cycles 1 and 2 were compared using paired t-test or Student t-test (see
Results).

RESULTS

Cortisol

The mean 6 SEM plasma concentrations of cortisol during
infusion of saline were 11.3 6 1.4 ng/ml in experiment 1 and
13.0 6 1.6 ng/ml in experiment 2, values at or near the level
we observe in nonstressed ewes [29, 30]. The mean 6 SEM
values were maintained at 172.5 6 6.9 ng/ml during infusion
of cortisol in experiment 1 and did not differ between cycles 1
and 2. In experiment 2, the mean 6 SEM plasma cortisol
concentration during cortisol infusion in cycle 1 exceeded that
in cycle 2 (168.0 6 11.6 vs. 136.0 6 7.7 ng/ml; P , 0.05).
Overall, plasma cortisol levels during infusion were ;1.5 times
greater than the mean values seen in ewes during infusion of
endotoxin in the natural or artificial follicular phase [3, 10], but
values during cortisol infusion were within the range of
maximal values induced by endotoxin.

Experiment 1

There was no effect of cortisol on incidence of the LH
surge. Regardless of whether treated with vehicle or cortisol, all
ewes responded with an unambiguous LH surge in both the
first and second cycles. Cortisol, however, increased the latent
period and reduced the amplitude of the LH surge, but both
effects depended on treatment sequence. When vehicle was
infused in cycle 1 and cortisol in cycle 2, the LH surge was
delayed in each of the five ewes; the latent period increased by
an average of 10 h (22.6 and 32.2 h in cycles 1 and 2,
respectively; P , 0.001, paired t-test) (Fig. 1A). Furthermore,
the LH surge amplitude was reduced by 53% compared with
that in cycle 1 when vehicle was infused (mean 6 SEM
amplitude, 164 6 31 vs. 352 6 48 ng/ml; P , 0.05) (Fig. 1B).
In contrast, when the sequence was reversed and cortisol was
given in cycle 1, there was no effect on the latent period (Fig.
1C) or the amplitude (Fig. 1D). In addition, there was no
difference in the duration of the LH surge in animals treated
with cortisol in cycle 1 vs. vehicle in cycle 2 (mean 6 SEM
duration, 10.5 6 1.2 vs. 9.0 6 0.7 h; P . 0.05) or when
treatments were reversed (10.8 6 0.9 vs. 14.8 6 4.4 h, vehicle
in cycle 1 vs. cortisol in cycle 2; P . 0.05).

Experiment 2

As in experiment 1, all ewes expressed an LH surge in both
cycles regardless of treatment. The latent period in control
ewes (i.e., saline infused in both cycles) was greater in cycle 2
than in cycle 1, thus indicating a cycle effect (21.9 6 1.4 h vs.
18.7 6 1.6 h; P , 0.02, paired t-test). Because of this and the
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cycle effect in experiment 1, LH surge parameters between
cortisol- and vehicle-treated ewes were compared within each
cycle by Student t-test rather than within ewes across cycles by
paired t-test (11–12 ewes per group for each cycle). This
analysis revealed that cortisol delayed the LH surge by an
average of 4.3 h in cycle 1 (P , 0.01) and 4.2 h in cycle 2 (P ,
0.01) (Fig. 2, A and C). Cortisol tended to reduce the LH surge
amplitude in cycle 2 but not in cycle 1 (Fig. 2, B and D). The
mean 6 SEM amplitude in cycle 2 was 30% lower in ewes
receiving cortisol than in ewes receiving vehicle (176 6 25 vs.
252 6 33 ng/ml; P¼ 0.086). Cortisol did not affect the mean
6 SEM surge duration in cycle 1 (12.4 6 0.8 vs. 11.6 6 0.5 h,
vehicle vs. cortisol; P . 0.05) or cycle 2 (11.4 6 0.9 vs. 10.9
6 0.6 h, vehicle vs. cortisol; P . 0.05).

DISCUSSION

Our findings indicate that cortisol can interfere with the
estradiol-induced LH surge in ovariectomized ewes under
conditions that simulate the follicular phase of the estrous
cycle. Cortisol did not block the LH surge, but it had other
disruptive effects. In experiment 1, cortisol reduced the LH
surge amplitude by ;50% and delayed the surge by 10 h,
which represents almost half of the latent period for LH surge
induction in this model. The detrimental effects of cortisol,
however, were evident only in the second cycle. This suggested
that exposure to ovarian steroids during the previous cycle

sensitized the LH surge mechanism to cortisol in the second
cycle. Therefore, the design for experiment 2 was modified to
strengthen testing for cortisol effects within each cycle, as well
as between consecutive cycles. In experiment 2, cortisol
delayed the LH surge by 4 h in both cycles and tended to
reduce the amplitude in cycle 2. Collectively, the two
experiments indicate that cortisol can interfere with the positive
feedback action of estradiol.

The lack of an effect of cortisol on the latent period in cycle
1 of experiment 1 is difficult to explain. It cannot be explained
by the lack of exposure to ovarian steroids during a previous
cycle because cortisol delayed the LH surge in the first cycle of
experiment 2, when there was no such prior exposure to
steroids. Furthermore, it cannot be explained by known
experimental conditions (time of year, nutrition, etc.), as these
were similar in experiments 1 and 2. More likely, the lack of an
effect of cortisol to delay the surge in cycle 1 of experiment 1
(compared with vehicle in cycle 2) is related to the cycle effect
whereby the latent period increases in the second cycle
independent of cortisol action, as revealed in experiment 2.
This cycle effect could also explain why the delay of the LH
surge was so great (10 h) in experiment 1 when ewes were
treated with vehicle in cycle 1 and cortisol in cycle 2 because
the delaying effect of cortisol would be superimposed on the
cycle effect. Of importance, the strengthened design of
experiment 2 eliminated the influence of a cycle effect, and

FIG. 1. Influence of cortisol on the estra-
diol-induced LH surge in experiment 1. A
and C show the latent period from estradiol
stimulus to LH peak in individual ewes (thin
bars) and the mean 6 SEM for all ewes
(thick bars) in each cycle. B and D show the
mean 6 SEM plasma LH concentrations
normalized to the peak of the LH surge. In A
and B, vehicle was infused in cycle 1, and
cortisol was infused in cycle 2. In C and D,
cortisol was infused in cycle 1, and vehicle
was infused in cycle 2. Solid and open bars
and symbols indicate vehicle- and cortisol-
infused ewes, respectively. The mean 6

SEM values represent five ewes in A and B
and four ewes in C and D. **Group
difference in the latent period, P , 0.001. In
B, the LH surge amplitude was less in
cortisol- than vehicle-treated ewes (P ,
0.05).
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the action of cortisol to delay the estradiol-induced LH surge
was unambiguous.

Early work addressing the influence of corticosteroids on
the LH surge revealed that synthetic glucocorticoids block the
natural preovulatory LH surge and the estradiol-induced LH
surge in ovariectomized rats [31, 32]. Early experiments in
sheep, however, suggested that neither cortisol nor its synthetic
analog, dexamethasone, could block the estradiol-induced LH
surge, but the number of animals (e.g., two controls and three
cortisol-treated ewes) was insufficient to test for effects on the
latent period or the surge amplitude [33]. In a companion study
using a different follicular-phase model in which estradiol was
delivered as a single bolus rather than constant-release
implants, cortisol was found to delay, attenuate, and even
block the LH surge [34] or delay the expression of estrous
behavior [35], and the effect on the LH surge was more
profound in the breeding season compared with the nonbreed-
ing season. Those findings reinforce the present observations
by determining that cortisol can perturb the positive feedback
action of estradiol and that the response includes an increased
latent period and a decreased amplitude of the LH surge.

Several further questions arise from the present work. First,
how do our findings fit with the effect of cortisol in the natural
follicular phase, and through what mechanisms does cortisol
act? Recent studies [14–16] indicate that a cortisol treatment
similar to the one used in experiments 1 and 2 reduces the
frequency of GnRH and LH pulses in the natural follicular
phase, attenuates the preovulatory estradiol rise, and delays or

blocks the LH surge. Although the reduction in circulating
estradiol would be expected to compromise the LH surge, the
present work suggests that the deleterious effect on the
preovulatory LH surge also results from impaired neuroendo-
crine responsiveness to the positive feedback action of
estradiol. Delay of the positive feedback response most likely
reflects an effect on GnRH secretion because estradiol induces
a large surge of GnRH in the artificial follicular-phase model
used here [23, 25, 26] and because this is necessary for
initiating the LH surge [36–38]. Inhibition of GnRH secretion
is probably indirect because GnRH neurons in the ewe lack the
type II glucocorticoid receptor [39], which mediates neuroen-
docrine responses to stress-like elevations in glucocorticoids
[40]. Glucocorticoid receptors, however, are colocalized with
progesterone receptor and estrogen receptor a in neurons of the
preoptic area and arcuate nucleus of the ewe, providing a
possible locus of interaction in regulating GnRH secretion [41].
Another possibility is that cortisol might cross-react with
progesterone receptor, as progesterone also delays the LH
surge in sheep [42], but cross-reaction is unlikely with
physiological levels of cortisol because of low affinity of
progesterone receptor for glucocorticoids [43]. The reduced
amplitude of the LH surge in the present study likely includes
an effect on the pituitary, as cortisol acts on the pituitary to
inhibit response to GnRH in the ewe [44–46]. Supporting this
possibility, glucocorticoids disrupt estradiol-induced LH re-
lease in rats by suppressing the response to exogenous GnRH
[32], and transport stress has a similar effect in the ewe [5].

FIG. 2. Influence of cortisol on the estra-
diol-induced LH surge in cycle 1 (top) and
cycle 2 (bottom) of experiment 2. A and C
show the mean 6 SEM for the latent period
from estradiol stimulus to LH peak. B and D
show the mean 6 SEM plasma LH con-
centration normalized to the peak of the LH
surge. Solid and open bars and symbols
indicate values for vehicle- and cortisol-
treated ewes, respectively. **Group differ-
ence, P , 0.01 (11–12 ewes per group).
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Another question arising from our findings is how might a
delay and an attenuation of the preovulatory LH surge
influence overall reproductive success? Although it is not
known if attenuation of the LH surge would compromise
fertility, there is reason to suspect that a delay of the LH surge
could have deleterious effects. Because increased estradiol
secretion constitutes the ovarian signal to the neuroendocrine
axis that a follicle is nearing readiness to ovulate, a delay in the
LH surge could desynchronize follicular and/or oocyte
maturation and the ovulatory stimulus. There is evidence to
suggest that uncoupling of ovarian and neuroendocrine events
lowers fertility and produces epigenetic effects that compro-
mise the offspring. For example, an 11-h delay of the LH surge
in cattle, while increasing the number of ovulations, impairs
early embryonic development [47]. Lengthening of the estrous
cycle of the rat to 6 days leads to decreased fertilization and
implantation rates and increased chromosomal aberrations,
fetal abnormalities, and embryonic death [48, 49]. Further work
is needed to determine if the magnitude of the detrimental
effects of cortisol on the LH surge is sufficient to compromise
fertilization, embryonic development, and production of viable
offspring.

Yet another question pertains to physiological relevance.
Our treatment elevated plasma cortisol for the entire period
between onset of the estradiol stimulus and generation of the
LH surge. This treatment was based on observations that
infusion of endotoxin, which disrupted the LH surge in the
artificial follicular-phase model, elevated plasma cortisol for
the entire latent period to the LH surge [10]. Thus, cortisol
likely contributes to disruption of the positive feedback action
of estradiol in response to severe immune/inflammatory stress.
This is an attractive possibility because detrimental effects of
endotoxin on the estradiol-induced LH surge are not mediated
by prostaglandins, which relay effects of immune/inflammato-
ry stress on pulsatile GnRH and LH secretion [8, 18]. However,
caution must be exercised in extending our interpretation to
less severe stressors such as transport that evoke smaller and
briefer elevations in cortisol secretion. Nonetheless, the
magnitude and duration of the cortisol increment needed to
interfere with the positive feedback response are not known,
and timing of the cortisol rise relative to the estradiol stimulus
could be important. Clearly, further work is needed to assess
the applicability of our findings to stress-induced disruption of
reproductive neuroendocrine function.

Finally, although previous studies indicate that glucocorti-
coids can block or attenuate the estradiol-induced LH surge
[32], this is the first study (to our knowledge) to reveal that a
stress-like elevation in plasma cortisol can shift the timing of
the positive feedback response to a fixed estradiol signal, as is
seen in response to certain stressors. Interference with the
response to estradiol constitutes one mechanism by which
cortisol compromises the follicular phase of the estrous cycle,
and it likely contributes to the means by which severe stressors
such as endotoxin disrupt ovarian cyclicity. This could have the
adaptive value of reducing the likelihood of pregnancy in
animals with infectious or immune/inflammatory disease or
with adrenal disorders that chronically elevate cortisol (e.g.,
Cushing disease), thus allowing metabolic energy to be
partitioned in a manner that optimizes survival.
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Williams CY, Karsch FJ. Prostaglandins mediate the endotoxin-induced
suppression of pulsatile gonadotropin-releasing hormone and luteinizing
hormone secretion in the ewe. Endocrinology 2000; 141:1050–1058.

9. Williams CY, Harris TG, Battaglia DF, Viguié C, Karsch FJ. Endotoxin
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